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Abstract: Depressive disorders occur often jointly with anxiety disorders, which can cause serious health problems. The 

underlying mechanism is not fully understood. Figuring out the mechanism of depressive and anxiety disorders would benefit 

patients in future therapy. Brain-derived neurotrophic factor (BDNF) is a famous neurotrophin that modulates synaptic plasticity 

in the brain. It is generally believed that decreased BDNF levels are associated with depression. The purpose of this review is to 

elucidate the role of the BDNF-TrkB signaling pathway in different brain regions and its antidepressant effect, to provide 

scientific evidence for the treatment of anxiety and depression. The changes of the BDNF-TrkB signaling pathway before and 

after antidepressant treatment were compared by retrieving preclinical studies related to the BDNF-TrkB signaling pathway and 

classifying them according to different brain regions. It is found that the concentration of BDNF varies in different brain regions. 

The inhibition of the BDNF-TrkB pathway in the cortex, hippocampus, and amygdala and the activation of the BDNF-TrkB 

pathway in the anterior cingulate cortex (ACC), nucleus accumbens (NAc), and lateral habenula (LHb) is associated with anxiety 

and depression-like behaviors. Lacking BDNF or its receptor TrkB is not the cause of anxiety or depression, but affects the effect 

of antidepressant treatment. Increased BDNF can alleviate anxiety and depression. There are still other molecules that can 

regulate anxiety and depression-like behaviors by influencing the expression of BDNF or TrkB. The function of BDNF in the 

ACC, NAc, and LHb areas needs to be further explored. 

Keywords: Depression, Anxiety, BDNF, TrkB, Mechanism, Pathway 

 

1. Introduction 

Depressive disorders are mental disorders characterized by 

the presence of a sad, empty, or irritable mood, accompanied 

by somatic and cognitive changes that significantly affect the 

individual’s capacity to function [1]. Depressive disorders 

occur often jointly with anxiety disorders [2]. Around 85% of 

patients who have depression will also exhibit symptoms of 

anxiety, while up to 90% of individuals with anxiety disorders 

will also experience comorbid depression [3]. Depression and 

anxiety were two of the top ten causes of global 

disability-adjusted life-years (DALYs) in adolescents aged 

10–24 years in 2019 [4]. About 4.7% of the world’s population 

has an episode of depression every year [5]. The causes of 

depression and anxiety disorders are complex, including 

genetic factors and environmental factors. People with high 

depression polygenic risk scores [6] are more susceptible to 

depressive disorders. Adverse experiences such as social 

isolation [7], trauma [6], and childhood maltreatment [8] were 

significantly associated with depressive disorders. During the 

pandemic of COVID-19, the global prevalence of major 

depressive disorders (MDD) and anxiety disorders increased 

[9]. Figuring out the underlying mechanism is important to 

treat these mental disorders effectively. The pathogenesis of 

depressive disorders is not fully understood. There are some 

hypotheses about depression, including the neurotrophic 

hypothesis, monoamine hypothesis, 

hypothalamic-pituitary-adrenal axis hypothesis, etc. [10]. 

Brain-derived neurotrophic factor (BDNF), which is widely 

expressed in the brain, is the most studied neurotrophic factor 
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and plays a key role in the central nervous system by supporting 

neuron survival and facilitating neurogenesis [11]. It performs 

biological functions by binding to its specific receptors. There 

are at least two BDNF-specific receptors, TrkB and P75
NTR

, on 

the nerve cell membrane, and BDNF has a higher affinity with 

TrkB. Cavaleri D et al. found that people with MDD have lower 

peripheral and central BDNF levels than non-depressive 

individuals, based on meta-analyses [12]. 

To explore the molecular mechanisms of depression and 

anxiety and the effect of antidepressant treatment, 

experimental paradigms such as chronic unpredictable mild 

stress (CUMS), chronic restraint stress (CRS), learned 

helplessness (LH), corticosterone (CORT), 

lipopolysaccharide (LPS), etc. were used to induce animals 

showing anxiety and depression-like behaviors. In this 

review, we will elucidate the function of the BDNF-TrkB 

signaling pathway in diverse brain regions by giving a 

summary of the preclinical anxiety and depression-like 

behaviors studies. 

2. BDNF-TrkB Signaling Pathway in 

Anxiety and Depression-Like Behavior 

Impaired BDNF-TrkB signaling is associated with anxiety 

and depression-like behaviors (Figure 1). BDNF levels in 

MDD patients changed before and after antidepressant 

treatment. The studies on MDD patients’ post-mortem brain 

samples found that the levels of BDNF were decreased in the 

hippocampus [13] and amygdala [14]. After the effective 

treatment of antidepressant drugs [15] or electroconvulsive 

therapy (ECT) [16], the serum BDNF levels increased. And it 

was also found that BDNF levels in the hippocampus 

increased in antidepressant-treated MDD patients’ brain 

samples after death [17]. It suggested that decreased BDNF 

concentration was associated with anxiety and depression-like 

behavior, and preclinical studies also proved this and found 

something new. The relation between BDNF-TrkB signaling 

and anxiety and depression-like behavior in different brain 

regions was not consistent. (Table 1) 

 

Figure 1. Impaired BDNF-TrkB signaling pathway in anxiety and depression-like behaviors. 

Table 1. The alteration of BDNF and TrkB in different brain regions in anxiety and depression-like behavior. 

Pathway Animal Paradigm 

Phenotype 
Brain 

regions 

Before treatment After treatment 

 Anxiety-like 

behaviors 

Depression-like 

behaviors 
BDNF TrkB BDNF TrkB 

BDNF Rats LPS - - CT, Hip ↓  - - - [18] 

BDNF Mice CUMS Yes Yes CT, Hip ↓  - - - [19] 

BDNF-TrkB Rats CRS - Yes CT, Hip ↓  ↓  ↑  ↑  [20] 

PIK3CA-AKT1-NRF

2/BDNF 
Rats OBX Yes Yes CT, Hip ↓  ↓  ↑  ↑  [21] 

Nrf2/BDNF Mice CORT Yes Yes CT, Hip ↓  - ↑  - [22] 

BDNF Rats LH - - PFC, Hip ↓  - - - [23] 
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Pathway Animal Paradigm 

Phenotype 
Brain 

regions 

Before treatment After treatment 

 Anxiety-like 

behaviors 

Depression-like 

behaviors 
BDNF TrkB BDNF TrkB 

BDNF Mice LPS Yes Yes PFC, Hip - - ↑  ↑  [24] 

BDNF-TrkB Mice LPS - Yes PFC, Hip ↓  ↓  - ↑  [25] 

BDNF-TrkB Rats CUS Yes - PFC, Hip ↓  ↓  ↑  ↑ [26] 

BDNF-TrkB Rats 
Immune system 

activation 
Yes Yes PFC, Hip ↓  ↓  - - [27] 

BDNF-ERK-CREB Mice 
Methamphetamine 

withdraw 
Yes Yes PFC, Hip ↓  - - - [28] 

BDNF/VEGF Mice Burn Yes Yes PFC, Hip ↓  - ↑  - [29] 

BDNF-CREB Rats CUMS Yes Yes PFC ↓  - ↑  - [30] 

BDNF-HCN1 Rats SPS&S Yes Yes PFC ↓  - ↑  - [31] 

mTOR-BDNF Rats CUMS Yes Yes PFC ↓  - ↑  - [32] 

BDNF-TrkB-Akt Mice 

Subchronic arsenic 

exposure combined 
with reserpine 

Yes Yes PFC ↓  ↓  - - [33] 

TrkB/Hsp70 Hamsters CUMS Yes Yes 
PFC, Hip, 

Amy, Ht 
- ↓  - ↑  [34] 

BDNF Rats LPS/IL-1� - - Hip ↓  - - - [35] 

BDNF Rats CUMS Yes Yes Hip ↓  - - - [36] 

BDNF Rats CUMS - Yes Hip ↓  - ↑  - [37] 

BDNF Rats EM Yes Yes Hip ↓  - - - [38] 

BDNF Mice HFD No Yes Hip ↓  - - - [39] 

BDNF Mice FST - Yes Hip - - ↑  - [40] 

BDNF Mice CD Yes Yes Hip ↓  - - - [41] 

BDNF-TrkB Mice A�1-42 Yes Yes Hip ↓  ↓  ↑  ↑  [42] 

BDNF-CREB Rats PM2.5 Yes Yes Hip ↓  - - - [43] 

BDNF-TrkB-CREB Mice CORT No Yes Hip ↓  ↓  ↑  ↑  [44] 

BDNF-TrkB-CREB Mice Noise Yes Yes Hip ↓  ↓  ↑  ↑  [45] 

BDNF-TrkB-CREB Mice CRS Yes Yes Hip ↓  - ↑  ↑  [46] 

BDNF-TrkB-CREB Rats CUS Yes Yes Hip ↓  - ↑  - [47] 

BDNF-TrkB-CREB Rats CUS Yes Yes Hip ↓  ↓  - - [48] 

BDNF-TrkB-CREB-E
RK 

Mice CUMS Yes Yes Hip ↓  ↓  ↑  ↑  [49] 

PGC-1α-FNDC5-BD

NF 
Rats CUMS Yes Yes Hip ↓  - ↑  - [50] 

mTOR-BDNF Mice A�1-40 Yes Yes Hip ↓  - ↑  - [51] 

AMPK/BDNF Mice IBD - Yes Hip ↓  - ↑  - [52] 

BDNF-TrkB-Akt-Gsk
3b 

Rats CUMS Yes - Ht - ↓  - ↑  [53] 

CREB-BDNF Mice LPS Yes Yes ACC ↑  - ↓  - [54] 

NF-�B/BDNF Mice Hypoxia Yes Yes Amy ↓  - ↑  - [55] 

BDNF-TrkB-CRH Rats Alcohol Yes - Amy ↓  ↓  ↑  ↑  [56] 

BDNF Rats LH - - NAc ↑  - - - [23] 

BDNF Mice CSDS - - NAc ↑  - ↓  - [57] 

BDNF-TrkB Mice LPS - Yes NAc ↑  ↑  - ↓  [25] 

BDNF Rats LH/Fst - Yes DRN - - ↑  - [58] 

BDNF Mice CRS Yes Yes LHb ↑  - ↓  - [59] 

Abbreviations: ACC, Anterior cingulate cortex; Amy, Amygdala; CD, Crohn's disease; CORT, Corticosterone; CRS, Chronic restraint stress; CSDS, Chronic 

social defeat stress; CT, Cortex; CUMS, Chronic unpredictable mild stress; CUS, Chronic unpredictable stress; DRN, Dorsal raphe nucleus; EM, Endometriosis 

model; FST, Forced swimming test; HFD, High-fat diet; Hip, Hippocampus; Ht: Hypothalamus; IBD, Inflammatory bowel disease; LH, Learned helplessness; 

LHb, Lateral habenula; LPS, Lipopolysaccharide; NAc, Nucleus accumbens; OBX, Olfactory bulbectomy; PFC, Prefrontal cortex; SPS&S, Single prolonged 

stress & electric foot shock. 

2.1. Cortex 

The cortex is the layer of gray matter on the surface of the 

brain. It occupies about 80% of the brain and is responsible for 

perception, thinking, language, memory, etc. BDNF can promote 

neuron growth and the formation of synapses in the brain. The 

inhibition of the BDNF-TrkB signaling in the cortex is correlated 

with anxiety and depression. Anxiety and depression-like 

behavior [19, 22, 24, 32] can be induced by CUMS, LPS, CORT, 

etc. The BDNF [18, 25, 30, 32] and TrkB [26, 34] levels were 

decreased in the cortex. With BDNF decreased, dendritic spine 

density was also decreased in the cortex, and rats were 

susceptible to depression-like behavior in the LH [23]. 

2.2. Hippocampus 

The hippocampus is beneath the cerebral cortex, and in the 

medial temporal lobe of the brain. It occupies a little volume 

of the brain and is responsible for learning, memory, and 

emotion. The dentate gyrus (DG), CA1, CA2, and CA3 

regions of the hippocampus were investigated in many studies. 

The inhibition of the BDNF-TrkB signaling in the 

hippocampus is associated with anxiety and depression. In 

addition to the above-mentioned CUMS, CORT, LPS-induced 

emotional disorder models, chronic restraint stress (CRS), 

olfactory bulbectomy (OBX), Aβ1-40, Aβ1-42-induced model, 

and DSS-induced IBD model, can also lead rodents exhibiting 
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anxiety and depression-like behaviors [21, 42, 46, 51, 52]. 

The expressions of BDNF and TrkB [19, 21, 44, 47] in the 

hippocampus were decreased. And to be specific, BDNF 

mRNA levels in the dorsal hippocampus were decreased in the 

CRS model [46]. BDNF levels and dendrite spine density in 

CA3 and DG regions of the hippocampus of the LH 

susceptible group were significantly decreased [23]. 

Inflammation can lead to anxiety and depression-like 

behaviors. LPS model or DSS-induced IBD model can cause 

systemic inflammation including brain inflammation. BDNF 

was decreased and the inflammatory factors elevated [18, 25] 

in the hippocampus, especially in CA2 [35], CA3 [25, 35], and 

DG [25, 35] in LPS-induced models. Decreased proliferating 

cells and activation of astrocytes and microglia could be seen 

in the IBD model [52]. The proliferating and survival cells 

decreased in the ventral, dorsal, and DG of the hippocampus 

[51], and autophagy cells increased [42] in the Aβ-induced 

models. CUMS cause decreasing BDNF and TrkB and has an 

influence on synaptic plasticity, which shows by the decreases 

of PSD95 level and synaptic spines in the hippocampal CA1 

region, and the apoptosis of GFAP positive cells increased 

[47]. Early postpartum exposure to high doses of PM2.5 

induced anxiety and depression-like behaviors in rats, 

impairing the synaptic number in the hippocampal CA1 region, 

and the synaptic plasticity in the hippocampal region with 

PSD95 and SYP decreased [43]. 

2.3. Hypothalamus 

The hypothalamus is located under the dorsal thalamus and 

accounts for 0.3% weight of the brain. It involves the regulation 

of body temperature, feeding, endocrine, etc. The inhibition of 

the BDNF-TrkB signaling in the hypothalamus is associated with 

anxiety and depression. In CUMS paradigm, decreased TrkB 

mRNA in the VMH area of the hypothalamus was correlated 

with anxiety and depression-like behaviors [34]. Anxiety-like 

behavior can be seen in the acute sleep deprivation (SD) model, 

with decreased TrkB and p-Akt levels, elevated serum 

corticosterone and inflammation factor, and astrocyte activation 

in the hypothalamus [53]. 

2.4. Amygdala 

The amygdala is located at the anterior end of the inferior horn 

of the lateral ventricle. It is mainly involved in memory, visceral 

and endocrine regulation, emotional activity, etc. The inhibition 

of the BDNF-TrkB signaling in the amygdala is associated with 

anxiety and depression. Decreased BDNF and p-TrkB in the 

amygdala were observed in the hypoxic stress and repeated 

alcohol exposure-induced models [55, 56]. In the hypoxic stress 

model, the brain exhibits oxidative stress and inflammation status, 

with increased MDA, decreased antioxidants like GSH, SOD, 

and CAT, and increased inflammatory factors [55]. And the 

serum corticosterone was elevated with the increase of 

CRH-positive cells in the PVN of the hypothalamus [56]. 

2.5. Anterior Cingulate Cortex (ACC) 

ACC is located in the parahippocampal gyrus region and 

regulates emotional function. Activation of the ACC region 

and elevated BDNF levels are associated with anxiety and 

depression. In LPS-induced acute stress in rats, the ACC 

region was activated with an increasing level of c-Fos, and 

CREB, p-CREB, and BDNF levels were elevated in ACC [54]. 

Anxiety and depression-like behaviors can also occur in 

spared nerve injury (SNI) model. In this model, the ACC 

region was activated, and the expressions of BDNF and CREB 

were increased [54]. By knocking out CREB in ACC 

specifically, the expressions of CREB, p-CREB, and BDNF 

were all reduced, while the expressions of these proteins in the 

spinal cord were all increased, which could reduce anxiety and 

depression in rats [54]. With the silence of the ACC region, 

anxiety, and depression-like behaviors could be alleviated in 

rats [54]. The anti-BDNF antibody injection in bilateral ACC 

did not reverse the depression-like behavior of 

CUMS-induced mice [19]. This indicated that the expression 

of BDNF can be regulated by CREB. 

2.6. Ventral Tegmental Area - Nucleus Accumbens 

(VTA-NAc) 

VTA is located in the medial substantia nigra of the 

midbrain and the dorsal interpeduncular nucleus. NAc is 

located at the junction of basal ganglia and limbic system. 

VTA-NAc projecting has been proven in many studies [60, 

61]. The activation of the BDNF-TrkB signaling in the 

VTA-NAc is associated with anxiety and depression. In the 

CSDS paradigm, the c-Fos protein was elevated in the 

VTA-NAc, and BDNF was increased in NAc [57]. Increased 

BDNF levels in the NAc can also be seen in LPS or 

LH-induced models [23, 25]. Meanwhile, the density of 

dendritic spines was also found higher than the control group, 

which indicated that regional differences in BDNF levels and 

dendritic spine density in the brain may be helpful to resist 

inevitable stress [23]. 

2.7. Dorsal Raphe Nucleus (DRN) 

DRN is located in the midbrain and is the most important 

nucleus of serotonin neurons in the central nervous system. 

The inhibition of the BDNF-TrkB signaling in the DRN is 

associated with anxiety and depression. Infusion of BDNF in 

the midbrain near the DRN could reverse the depression-like 

behavior of rats [58]. Conditional knockout BDNF or TrkB in 

the DRN could not lead to anxiety or depression-like behavior, 

but conditional knockout TrkB could lead to loss of 

antidepressant efficacy, not BDNF [62]. Thus, we can see that 

TrkB in DRN may play an important role during 

antidepressants. 

2.8. The Lateral Habenula (LHb) 

The habenula is located above the posterior thalamus near 

the midline. It consists of the LHb and the medial habenula 

(MHb). The activation of the BDNF-TrkB signaling in the 

LHb is associated with anxiety and depression. In the 

CRS-induced model, the LHb was activated with an increased 

expression of c-Fos, and BDNF [59]. One study showed that 
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effort-based reward (EBR) contingency training could be a 

behavioral therapeutic intervention for depressive symptoms 

in rats, and the expression of BDNF in LHb decreased in EBR 

contingency training rats [63, 64]. After the BDNF was 

knockout in the LHb, CRS could not induce anxiety and 

depression-like behaviors in mice, and the expression of c-Fos 

and BDNF were not increased in the CRS paradigm [59]. 

3. The Function of BDNF in 

Antidepressant Treatment 

In the combination of CUMS and 12-hour sleep deprivation 

(SD)-induced model, the depression-like behavior was 

alleviated with the hippocampal BDNF increased, but the 

anxiety-like behavior did not improve [49]. Conditional 

knockout BDNF in CA1 or DG of the hippocampus and DRN 

of the midbrain could not induce anxiety or depression-like 

behavior but could impair the antidepressant function [62, 65]. 

After the treatment of antidepressants, the BDNF cKO mice in 

CA1 or DG showed depression-like behavior compared with 

wild-type mice, but without anxiety-like behavior [65]. 

Conditional knockout TrkB in DRN also didn’t show anxiety 

or depression-like behavior, and after the treatment of 

antidepressants, mice exhibited depression-like behavior but 

not anxiety-like behavior [62]. Injecting BDNF into DG, CA3 

of the hippocampus, DRN of the midbrain, and VTA showed 

an antidepressant role but not an antianxiety function [58, 66, 

67]. The injection of TrkB.T1 into NAc could lead to 

depression-like behavior, not anxiety [67]. Conditional 

knockout BDNF in LHb could prevent depression-like 

behavior but not anxiety-like behavior [59]. Thus, it seems 

like BDNF-TrkB signaling works weak in anxiety-like 

behaviors. (Table 2) 

Table 2. Preclinical studies of BDNF-TrkB signaling in anxiety and depression-like behavior. 

Pathway Animal Paradigm 

Before treatment After treatment 

 Anxiety-like 

behaviors 

Depression-like 

behaviors 

Anxiety-like 

behaviors 

Depression-like 

behaviors 

BDNF-TrkB-CREB-ERK Mice SD 12h after CUMS Yes Yes Not improved Improved [49] 

BDNF Mice BDNF cKO in DG No No Not improved 

Improved in wildtype 

mice. Not improved 

in BDNF cKO mice 

[65] 

BDNF-TrkB Mice BDNF cKO in DRN No No Not improved Improved [62] 

BDNF-TrkB Mice TrkB cKO in DRN No No Not improved 

Improved in wildtype 

mice. Not improved 

in TrkB cKO mice 

[62] 

BDNF Rats BDNF infusion in DG No Yes Not improved Improved [66] 

BDNF Rats BDNF infusion in CA3 No Yes Not improved Improved [66] 

BDNF Rats BDNF infusion in CA1 No Yes Not improved Not improved [66] 

BDNF Rats BDNF infusion in DRN No Yes Not improved Improved [58] 

BDNF-TrkB Rats BDNF infusion in NAc - - No Yes [67] 

BDNF-TrkB Rats TrkB. FL infusion in NAc - - No No [67] 

BDNF-TrkB Rats TrkB. T1 infusion in NAc - - No Improved [67] 

BDNF Mice BDNF cKO in LHb Yes Yes Not improved Improved [59] 

Abbreviations: cKO, Conditional knockout; CUMS, Chronic unpredictable mild stress; DG, Dentate gyrus; DRN, Dorsal raphe nucleus; LHb, Lateral habenula; 

NAc, Nucleus accumbens; SD, Sleep deprivation. 

Patients with endometriosis have a high incidence of 

anxiety and depression. By establishing the rat endometriosis 

model (EM), researchers found that MDA in the hippocampus 

of rats began to rise 14 days after EM, at which point 

depression-like behaviors began to appear. Until 21 days after 

EM, the rats' anxiety-like behaviors gradually increased, at 

which time corticosterone increased. The hippocampus had 

pro-oxidation status with increased TPO, decreased GSH and 

SOD activity, and low BDNF levels [38]. This indicates that in 

the EM model, decreased BDNF levels in the hippocampus 

lag behind anxiety and depression-like behaviors. And BDNF 

may be not the cause of anxiety and depression, it might be the 

mediator towards the progression or prevention of anxiety and 

depression. 

This phenotype was also confirmed by the transgenic mice 

model. Most BDNF knockout mice died a few days after birth 

due to non-brain tissue effects such as cardiac dysplasia, but 

some individuals can survive for 2-4 weeks [68]. BDNF
+/-

 

mice didn’t exhibit depression-like behavior [69]. No anxiety 

and depression-like behaviors were observed in BDNF 

conditional knockout mice in the forebrain, hippocampal CA1 

and DG regions, and DRN of the midbrain, suggesting that the 

absence of BDNF in the hippocampus and the midbrain does 

not induce anxiety or depression-like behaviors [62, 65, 70, 

71]. But the absence of BDNF in the forebrain and DG region 

of the hippocampus rather than the CA1 region plays a role in 

antidepressant treatment [65, 71], suggesting that genetic 

damage to BDNF-TrkB signaling pathways does not appear to 

lead to depression-like behavior, but will hinder the role of 

antidepressants [72]. Thus, BDNF may be a target for 

antidepressants, but not the only mediator of depression or 

anxiety. 

3.1. Cortex 

BDNF-TrkB is a target for antidepressant therapy. Duman's 

group first proposed that the common target of antidepressant 



23 Yafei Shi et al.:  Role of BDNF-TrkB Signaling in Regulating Anxiety and Depression-Like Behavior in Diverse Brain Regions  

 

therapy may be BDNF and its receptor TrkB [20]. Researchers 

used electroconvulsive therapy, a variety of antidepressants, 

and a variety of non-antidepressant psychotropic therapies to 

treat the depression-like behavior of rats induced by CRS, to 

protect or reduce the damage of neurons by increasing the 

expression levels of BDNF and TrkB [20]. The following 

preclinical experiments also confirmed this. After treatment of 

anxiety and depression-like behavior induced by CUMS and 

LPS, the BDNF-TrkB signaling was activated, and the levels 

of BDNF and TrkB were increased [24-26], and anxiety and 

depression-like behaviors of rodents were improved. This 

suggests that the BDNF-TrkB pathway plays an important role 

in the pathophysiological processes of anxiety and 

depression-like behaviors. Antidepressant therapy was 

ineffective in BDNF
+/-

 transgenic mice also proved it [69]. 

During antidepressant therapy, BDNF mediated the activation 

of TrkB and induced TrkB autophosphorylation, which led to 

the phosphorylation of CREB [69]. In LPS induced acute 

stress model, intraperitoneal (i. p.) injection of TrkB agonist 7, 

8-dihydroxyflavonoids (7, 8-DHF) showed antidepressant 

effects, significantly alleviating the reduction of p-TrkB in the 

prefrontal cortex, while pre-injection of TrkB antagonist 

ANA-12 blocked the antidepressant effects of 7, 8-DHF [25]. 

Compared with wild-type mice, cortical TrkB-T1 subtype 

overexpressing mice showed decreased TrkB signaling in the 

brain [73] and decreased responsiveness to antidepressant 

drugs [69]. These studies suggest that the BDNF-TrkB 

signaling pathway plays a role in depression-like behavior and 

antidepressant effects. 

3.2. Hippocampus 

The BDNF-TrkB pathway in the hippocampus plays an 

important role in mediating the effect of antidepressant therapy. 

BDNF and TrkB mRNA levels increased in the granule cell layer 

of the DG region and conical cell layer of the CA3 and CA1 

region after antidepressant or electroconvulsive therapy but 

remained unchanged after non-antidepressant psychotropic 

medication [20]. Multiple studies proved that BDNF and TrkB 

increased after the improvement of anxiety and depression-like 

behaviors after antidepressant therapy [21, 44, 46]. The 

combination of transcranial photobiomodulation (tPBM) and 

housing in an enriched environment (EE) can decrease the 

corticosterone concentration and activate the 

BDNF-TrkB-CREB signaling pathway in a noise stress-induced 

model [45]. Continuous or interval exercise preconditioning 

could mitigate the anxiety and depression-like behaviors of 

CUMS by activating the PGC-1α/FNDC5/BDNF pathway in the 

hippocampus [50]. Exercise can increase the number of 

hippocampal cell proliferation and survival in the Aβ-induced 

model [51]. Anti-inflammation treatment can activate the 

antioxidant factor Nrf2 signaling, to reduce inflammatory factors, 

and activate BDNF-TrkB signaling to improve anxiety and 

depression in LPS [24] and OBX-induced models [21]. In the 

CORT-induced model, fluoxetine treatment can activate the Nrf2 

signaling pathway, and increase the BDNF expression to play an 

anti-anxiety depression effect [22]. But Nrf2 signaling was not 

the upstream signaling pathway of BDNF-TrkB signaling, for 

Nrf2 knockout mice can present elevated BDNF expression [22]. 

Liver hydrolysate can prevent depressive-like behavior in the 

DSS-induced IBD model by activating the AMPK-BDNF 

signaling to increase the proliferation of hippocampal cells and 

neurogenesis [52]. These results suggest that BDNF and its 

receptor TrkB may be the target of antidepressant therapy. 

To verify the antianxiety and antidepressant functions of 

BDNF-TrkB, researchers infused BDNF into the DG, CA3, and 

CA1 areas of the bilateral hippocampus respectively in the LH 

paradigm, then they found that the DG and CA3 areas were 

activated with the improvement of depression-like behavior, 

which was confirmed by the increment of c-Fos and Elk-1 [66]. 

Ketamine can alleviate anxiety and depression-like behaviors, 

and Trk antagonist (K252a) can antagonize its therapeutic effect 

[47]. TrkB agonist 7, 8-dihydroxyflavone (7, 8-DHF) can exhibit 

antidepressant function by preventing the decrease of p-TrkB in 

DG and CA3 areas of the hippocampus in the LPS-induced 

model [25]. In the LH paradigm, inhibition of Trk (K252a) or 

MEK (U0126) blocked the antidepressant effect of BDNF, 

suggesting that the effect of BDNF is mediated by the activation 

of MEK and MAPK cascades [66]. 

3.3. Hypothalamus 

After anti-inflammation treatment, with the PI3K-Akt and 

BDNF-TrkB signaling pathway in the hypothalamus activated, 

the neuroinflammation was alleviated, corticosterone 

concentration decreased, the activation of astrocytes in the 

hypothalamus was inhibited, and anxiety-like behavior was 

improved [53]. Infusing BDNF into the DG region of the 

hippocampus, TrkB mRNA in the VMH region of the 

hypothalamus was up-regulated, showing an antidepressant 

effect [34]. 

3.4. Amygdala 

After the treatment of drugs or acupuncture, BDNF and 

p-TrkB were increased, and the anxiety and depression-like 

behaviors were alleviated [55, 56]. At the same time, the lipid 

peroxidation and inflammation levels in the brain and the 

serum corticosterone were decreased, with NF-κB signaling 

inhibited [55]. The expression of CRH in the PVN also 

decreased [56]. Injecting BDNF into the DG area, TrkB 

mRNA increased in the CeA of the amygdala, which 

performed an antidepressant function [34]. In the LPS 

paradigm, IL-33 was up-regulated in the amygdala, and IL-33 

knockout mice exhibited an antianxiety effect with BDNF 

level increased in the amygdala [74]. Injecting TrkB 

antagonists, ANA-12, in the amygdala can prevent the 

increase of CRH in PVN, and alleviate the anxiety-like 

behavior of rats [56]. This indicated that activating 

BDNF-TrkB signaling could decrease the corticosterone level 

by regulating the CRH-positive neurons in PVN. 

3.5. VTA-NAc 

BDNF protein in NAc was thought to be derived from VTA 

[75]. Infusing BDNF in VTA for 1 week, the latency of 

immobility was shortened by 57%, which means that the rats 
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showed depression-like behavior [67]. Bilateral NAc infusion 

of TrkB antagonist, ANA-12, showed an antidepressant effect 

by preventing the elevated p-TrkB level [25]. To study the 

function of TrkB in NAc, rats received an intra-NAc 

full-length (TrkB. FL) or truncated (TrkB. T1) TrkB AAV 

injection. Compared with TrkB. FL and control groups, the 

injection of TrkB. T1 into NAc prolonged the latency of 

immobility by almost five times, showing an 

antidepressant-like effect [67]. 

3.6. LHb 

The stimulation of LHb seems can increase the BDNF level 

in other tissues. A woman diagnosed with MDD treated with 

deep brain stimulation (DBS) of the LHb, was found an 

increased level of BDNF in the serum [76]. LHb lesions can 

improve the inflammatory response of the hippocampus and 

inhibit the activation of the hippocampal NF-κB pathway and 

the expression of inflammatory factors [77]. Inhibiting the 

function of LHb can increase the expression of BDNF and 

TrkB in the hippocampus [77, 78]. 

4. The Downstream and Upstream 

Molecular of BDNF-TrkB Signaling 

The decrease of p-ERK was found in anxiety and 

depression models [79-81], and MKP-1, the negative 

regulators of ERK1/2 signaling, was increased [28]. Infusing 

MEK inhibitor U1026 into the medial prefrontal cortex 

(mPFC) or dorsal hippocampus (dHP), rats showed anxiety 

and depression-like behavior, and the expression of p-CREB 

decreased [82]. As the up-regulation of p-ERK and p-CREB, 

BDNF increased and the anxiety and depression-like 

behaviors were alleviated [49, 83]. 

The decrease of p-CREB was found in anxiety and 

depression models [84-86], along with hypomyelination and 

impaired synaptic plasticity [47, 48, 86], and the decreasing 

BDNF [30, 49]. With the increasing expression of p-CREB 

after treatment, the myelination was increased, which was 

confirmed by the increasing MBP, and the synaptic plasticity 

was improved [47, 86]. The expression of BDNF also 

increased [87, 88]. 

The decrease of p-mTOR was found in anxiety and 

depression models [51, 89, 90], along with decreased synaptic 

plasticity [90]. After antidepressant treatment, the expression 

of p-mTOR increased [91, 92], and the therapeutic effect 

could be inhibited by an mTOR inhibitor [92, 93], blocking 

the enhancement of excitatory synaptic transmission [32]. 

Depression-like behavior was observed in mice by unilaterally 

injecting siRNA into the mPFC to reduce the expression of 

mTOR. The expression of BDNF in the cortex decreased, and 

the dysregulation of the release of serotonin and glutamate in 

the DRN was observed [94]. 

Increased serum corticosterone, inflammation factors, and 

oxidative stress status were observed in anxiety and 

depression models [41, 95, 96], along with the activated 

astrocyte and microglia [96, 97]. In these models, the 

expression of TLR4 and NF-�B was increased [26, 41, 98]. 

As the increase of TLR4, TLR4-MyD88-NF-�B signaling was 

activated, and the inflammation factors were increased [95, 

96]. Anti-inflammation treatment can inhibit the NF- � B 

signaling in the LPS-induced model, and alleviate anxiety and 

depression-like behaviors by decreasing the inflammation 

factors and the activated astrocyte and microglia and 

increasing the expression of BDNF [55, 99]. The increase of 

BDNF in NAc and LHb can lead to depression-like behavior 

[67, 77] but inhibition of the activated NF-�B signaling 

pathway to alleviate the inflammation in NAc and LHb can 

improve anxiety and depression-like behavior in male mice 

[77, 100]. 

5. Conclusions 

In this review, we summarized the function of BDNF-TrkB 

signaling in different brain regions and its antidepressant 

effect. In all, the inhibition of the BDNF-TrkB signaling 

pathway in the cortex, hippocampus, hypothalamus, amygdala, 

and DRN, and the activation of the BDNF-TrkB signaling 

pathway in ACC, NAc, and LHb is associated with the 

development of anxiety and depression-like behavior. Studies 

have shown that the increased BDNF is related to high 

synaptic plasticity. This indicated that different brain regions 

have different regulatory effects on anxiety and 

depression-like behaviors, which requires further exploration. 

Due to limited studies of BDNF-TrkB signaling in the brain 

except for the cortex and hippocampus, the role of elevated 

BDNF-TrkB levels in ACC, NAc, and LHb leading to anxiety 

and depression-like behaviors remains to be elucidated. The 

impaired BDNF-TrkB signaling is a mediator, not the cause, 

of anxiety and depression-like behaviors. It can be regulated 

by the mTOR, NF-κB, PGC-1α-FNDC5, and AMPK signaling 

pathways. Decreased BDNF makes the body more susceptible 

to anxiety and depression. BDNF-TrkB signaling pathway 

plays a key role in antidepressant treatment. Without BDNF, 

anti-anxiety and anti-depression treatments will not work, 

and correspondingly, drugs or physical treatment targeting to 

improve the BDNF-TrkB level are inclined to alleviate the 

symptom of depression. Therefore, during the treatment of 

anxiety and depression, efforts can still be made to increase 

the level of BDNF. But it is still necessary to pay attention to 

changes in its upstream and downstream pathways in order to 

accurately treat and prevent the occurrence of anxiety and 

depression. 
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