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Abstract: Techniques for reducing power consumption in digital circuits have become increasingly important because of the
growing demand for portable multimedia devices. Digital filters, being ubiquitous in such devices, are a prime candidate for
low-power design. We present a new algorithmic approach to low-power frequency-selective digital filtering which is based on
the concepts of adaptive approximate processing. This approach is formalized by introducing the class of approximate filtering
algorithms in which the order of a digital filter is dynamically varied to provide time-varying stopband attenuation in proportion
to the time-varying signal-to-noise ratio (SNR) of the input signal, while maintaining a fixed SNR at the filter output. Since
power consumption in digital filter implementations is proportional to the order of the filter, dynamically varying the filter order
is a strategy which may be used to conserve power. From this practical technique we abstract a theoretical problem which
involves the determination of an optimal filter order based on observations of the input data and a set of concrete assumptions
on the statistics of the input signal. Two solutions to this theoretical problem are presented, and the key results are used to
interpret the solution to the practical low-power filtering problem. We construct a framework to explore the statistical properties
of approximate filtering algorithms and show that under certain assumptions, the performance of approximate filtering algorithms
is asymptotically optimal.
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1. Introduction

Adaptive filtering and energy efficiency has been a topic
of great interest in recent years. For example, the interest
in reducing the power consumption of digital filters used
in edge computing and sensor networks is growing rapidly
[1]. A fundamental tradeoff between power consumption
and accuracy has been utilized to determine energy-optimum
design parameters for deep in-memory architectures for
efficient hardware realizations of machine learning algorithms
[2]. Remarkably, in a recent paper the authors note
that “optimization for power is one of the most important
design objectives in modern digital signal processing (DSP)
applications,” and then demonstrate the efficacy of a
hybrid energy-efficient methodology for digital finite duration
impulse response (FIR) filters [3].

Approximate signal processing may be used for applications
in which it is desirable to dynamically adjust the quality of

signal processing results to the availability of resources, such
as time, bandwidth, memory, and power. Recently, excellent
research has been accomplished in the area of incremental
refinement structures for approximate signal processing in
the context of power-efficient approximate multiplication for
applications in which exact computation is not necessary [4-
8]. The design of an energy efficient digital IIR filter using
approximate multiplication, with a similar objective to the IIR
filters presented in this paper, is presented in the research by
Pilipović et al. [1]. Furthermore, approximate computing
represents another recent innovation for minimizing power
consumption via a variety of methods for reducing arithmetic
activity [9-12].

The incessant demand for low-power signal processing
algorithms has been persistent and consistent over the past
three decades. The realm of energy efficiency has only grown
in its intensity and breadth. In intensity, low-power speech
recognition is now popular in mobile devices [13, 14]. The



23 Jeffrey Ludwig: Asymptotically Optimal Low-Power Digital Filtering Using Adaptive Approximate Processing

evolution of energy efficient engineering has moved along
stunningly creative paths to wearable devices [15], ingestible
electronics [16, 17] and cryptographic engines [18].

In this paper we consider the practical problem of
dynamically reducing the order of a frequency-selective digital
filter, omnipresent in all of the previously mentioned state-
of-the-art signal processing electronic systems, to conserve
power. We will demonstrate that it is possible to dynamically
vary the stopband attenuation provided by a digital filter
to obtain the minimum amount of attenuation needed to
continuously maintain a given output signal-to-noise ratio
(SNR), and show that such adaptive approximate filtering
algorithms significantly reduce the required average power
consumption relative to that of conventional fixed-order
filtering algorithms. From this practical problem we abstract
a theoretical problem which involves the determination of an
optimal filter order based on observations of the input data
and a set of concrete assumptions on the statistics of the
input signal. Two solutions to this theoretical problem will
be presented, and the key results will be used to interpret the
solution to the practical low-power filtering problem.

An underlying theory for approximate filtering is developed.
We construct a framework to explore the statistical properties
of approximate filtering algorithms, and show that under
certain assumptions the performance of approximate filtering
algorithms is asymptotically optimal. The focus of the
algorithm development is on applications involving frequency-
selective digital filtering in which the goal is to reject one or
more frequency bands while keeping the remaining portions
of the input spectrum largely unaltered. Examples of such
applications include lowpass filtering for signal upsampling
and downsampling, bandpass filtering for subband coding,
and lowpass filtering for frequency-division multiplexing and
demultiplexing. In addition, approximate filtering algorithms
appear to be useful in other domains in which digital filters
are used such as prediction, smoothing, echo cancellation, or
equalization.

1.1. Overview

A brief summary of approximate filtering is now given.
The basic idea is to begin filtering a given input signal with
a frequency-selective digital filter of some nominal order, as
shown in Figure 1. This filter has well-defined passband
and stopband regions in frequency. After L output samples
have been produced, we use the most recent block of L input
and output samples to form an easily computable low-power
estimate of the current input SNR, defined as the ratio of the
input signal power in the passband of the filter to the input
signal power in the stopband of the filter. In Figure 1 the
decision module D uses the signal power estimates P̂x and
P̂y to form an estimate of the temporally local input SNR.
This estimate of the input SNR is then used to update the
filter order to be the minimum value which guarantees that the
output SNR, defined as the ratio of the output signal power
in the passband of the filter to the output signal power in the
stopband of the filter, will be greater than or equal to a pre-

specified minimum tolerable output SNR. This filter order is
then used to produce another block of L output samples, and
the filter order update process is repeated.

Figure 1. An overview of approximate filtering. The adaptation strategy for updating the
filter order after each new set of L output samples is defined by the decision moduleD.

A key issue addressed in this paper is how well the
low-power estimate of the filter order converges to the
theoretical minimum order for situations satisfying certain
statistical assumptions which are made in the derivation of
the underlying theoretical framework for approximate filtering.
Computer simulations are used to verify analytical results
which we obtain in this paper that show that convergence to
the correct filter order depends upon: 1) the number L of input
and output samples used in estimating the input SNR, 2) the
nominal order of the filter applied in generating the output
samples that are used in estimating the input SNR, and 3) the
proximity of the true input SNR to the boundaries in the input
SNR space corresponding to changes in the optimal choice of
filter order [19].

The adaptation mechanism used with an approximate
filtering structure is designed to determine and use the
filter with the smallest order while ensuring that the
approximate filter output meets a pre-specified quality
constraint. Minimization of the filter order used at any
given time is desirable because of the resulting savings in
power consumption by the underlying hardware [20]. The
output quality criterion we use is designed to keep the
output SNR (the ratio of the passband power to the stopband
power in the filter output) above specified level. Other
output quality constraints could easily be incorporated with
minor modifications. One possible alternative output quality
constraint is to keep the output signal power in the stopband of
the filter below some pre-specified level [20].

1.2. Approximate Filter Structures

In approximate filtering algorithms the order of a frequency-
selective digital filter is varied in a way defined by a control
strategy and an approximate filter structure. A collection
of frequency-selective digital filters, one for each filter order
N in a given range Nmin < N < Nmax, constitutes
an approximate filter structure H. Each filter structure H
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must possess the property that its progressively higher order
filters have progressively increased average attenuation in the
stopband region(s) while maintaining close to unity gain in
the passband region(s). Approximate filter structures represent
an important element in the characterization of approximate
filtering algorithms. Two classes of approximate filter
structures, truncation and replacement filter structures, are
important and used as a basis for classifying all approximate
filter structures into one of four types [21]. A replacement
filter structure is characterized by the relationship between
the coefficients of filters of different orders being completely
unconstrained; the coefficients of each individual filter may
be selected or replaced independently. In a truncation
filter structure this is not allowed. For a truncation filter
structure with FIR constituent filter elements, the coefficients
defining the lower order filters are constrained to be subsets
of the coefficients defining the filter with maximum order
Nmax. Similarly, in a truncation filter structure with IIR
constituent elements, the pole/zero pairs defining the lower
order filters are constrained to be subsets of the pole/zero
pairs defining the filter with maximum order. Thus the lower
order constituent elements in a truncation filter structure are
truncated versions of the higher order constituent elements.
It is clear that truncation filter structures may be described
with fewer independent filter coefficients than replacement
filter structures. Associated with this property is the fact that
truncation filter structures require less memory, chip area, and
bus accesses than replacement filter structures.

The frequency response magnitudes of the filters drawn
from an exemplary approximate filter structure based on
truncations of an IIR Butterworth filter are shown in Figure
2. The half-power frequency of the Butterworth filters is
π/2. In this figure we show the magnitude-squared frequency
responses for truncations of a 20th-order Butterworth filter
with 3, 5, 7, 9, and 10 second-order sections. The key
feature of an approximate filter structure is that the higher-
order filters provide higher average stopband attenuation and
thus have lower stopband power than the lower-order filters.
This feature is clearly illustrated in Figure 2, and allows us
incorporate a tradeoff between filter quality and filter cost into
approximate filtering algorithms. The filter quality is measured
by the average stopband attenuation, while the filter cost is
measured by the required power consumption or equivalently
the required filter order. The passband PB, stopband SB, and
transition band TB regions for all filters in the approximate
filter structure H are identical. The passband and stopband
regions must be explicitly specified in the definition of an
approximate filter structure, and by default the transition band
is defined to span the remaining portions of the spectrum ω ∈
[−π, π] which are not included in the passband or stopband
regions. Each of the individual filters which make up the
constituent elements of the approximate filter structureHmust
be properly normalized. Possible normalizations include a
unit energy normalization or a unity DC (zero frequency) gain
normalization.

Figure 2. Magnitude-squared frequency responses for truncations of a 20th-order
Butterworth filter with 3, 5, 7, 9, and 10 second-order sections. The half-power frequency
of the Butterworth filters is π/2.

We have stated our intention to study the problem of
dynamically reducing the order of a frequency-selective digital
filter to conserve power while maintaining a desired level of
output quality. We have stressed that the key is use vary
the filter order over time to provide time-varying stopband
attenuation in proportion to the time-varying SNR of the
input signal, while maintaining a fixed SNR at the filter
output. From the practical problem of dynamically reducing
the order of a frequency-selective digital filter to conserve
power, in the next section we abstract and explore an intimately
related theoretical problem. The solutions to this theoretical
problem will provide a basis for understanding and analyzing
approximate filtering algorithms.

2. Problem Statement

In this section we introduce a theoretical problem,
termed the approximate filtering problem, which involves
the determination of an optimal filter order based on
observations of input data and a set of concrete assumptions
on the statistics of the input signal. Two solutions to
this theoretical problem are presented. One solution is
guided by a low-power approach and achieves suboptimal
performance with an extremely low computational cost. A
second solution is guided by a maximum likelihood objective
and provides superior performance while requiring much
more computation. While computationally impractical, the
maximum likelihood approach provides valuable insight as
well as a performance benchmark for comparison with the low-
power solution. The key theoretical results are used to interpret
the entire class of approximate filtering algorithms.

The fundamental theoretical problem we address in this
paper is

Given
1. a set of L input samples x[0] · · ·x[L − 1] from a wide

sense stationary (WSS) Gaussian random process x[n]
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with power spectral density Sx(ω)
2. a filter order set N = Nmin · · ·Nmax containing M

elements
3. a filter structure H = {hNmin[n] · · ·hNmax[n]},

containing M frequency-selective filter elements, all
with passband ω ∈ PB and stopband ω ∈ SB

4. a passband defined as ω ∈ PB for each filter in the filter
structureH

5. a stopband defined as ω ∈ SB for each filter in the filter
structureH

6. a minimum tolerable output signal-to-noise ratio
OSNRtol

Determine
The optimal filter order N∗, defined as the minimum order

N ∈ N of the frequency-selective filter hN [n] ∈ H which
provides sufficient stopband attenuation to assure

OSNR[N ] ≥ OSNRtol, (1)

where the output signal-to-noise ratio (SNR) is defined as

OSNR[N ] ,
P
PB[N ]
y

P
SB[N ]
y

. (2)

The output power spectral density is

Sy(ω) = |HN (ω)|2 Sx(ω), (3)

the output power in the passband is

PPBy [N ] =
1

2π

∫
PB

Sy(ω)dω

=
1

2π

∫
PB

|HN (ω)|2 Sx(ω)dω, (4)

and the output power in the stopband is

PSBy [N ] =
1

2π

∫
SB

Sy(ω)dω

=
1

2π

∫
SB

|HN (ω)|2 Sx(ω)dω. (5)

We refer to the problem in (1)-(5), as the approximate
filtering problem. Any particular solution to the problem
involves defining a method for reliably estimating the optimal
filter order N∗ based on observations of the input sequence
x[0] · · ·x[L− 1]. We measure the performance of a particular
solution in terms of how accurately, on average, the solution
determines the correct value for N∗. In this paper we will
present two distinct solutions to the approximate filtering
problem. The first is guided by a low-power consumption
constraint and thus produces estimates of N∗ which require
very low computational overhead. We call this the low-power
(LP) solution to the approximate filtering problem. The second
solution we present is motivated by a maximum likelihood
formulation and is therefore termed the maximum likelihood
(ML) solution to the approximate filtering problem. We will

show that the ML solution requires much more computation
and offers slightly better performance than the LP solution
in certain circumstances. While computationally prohibitive
for practical use, the ML solution is conceptually insightful as
its performance may be used as a meaningful benchmark for
comparison with the performance of the low-power solution.

2.1. Summary of Low-power Approach

The low-power (LP) approach to finding N∗ is
computationally simple and will be shown to perform almost
equally as well as the computationally prohibitive ML-based
approach, even for signals statistically tailored to favor the
ML-based approach.

A research group at Stanford University has designed
and implemented an approximate filtering algorithm for
the application of low-power interpolation and decimation.
Excellent results have been obtained with a conventional
interpolation/decimation system that was implemented and
shown to consume an average of approximately 86.4 mW
with a 5V power supply. Using an approximate filtering
algorithm compiled onto a programmable processor, the power
consumption was reduced by by 36% for the decimation
system and 17% for the interpolation system [22].

The LP approach computes an estimate of the output SNR
based on an estimate of the total power difference between
the input and output of a digital frequency-selective filter.
Conceptually, if the frequency-selective filter were an ideal
piecewise-constant filter

Hideal(ω) =

{
1 if ω ∈ PB
0 if ω ∈ SB

(6)

then the total power difference between the input and output
signals would be equal to the exact input signal power in the
stopband of the ideal filter. This is true since an ideal filter
perfectly eliminates all the components of the input signal in
its stopband, and passes with unity gain all the components of
the input signal in its passband. Thus, ideally the output signal
contains the exact passband components of the input signal,
and nothing else. The input signal obviously contains both
its passband and stopband signal components. Therefore the
difference in input and output signal powers ideally gives the
exact power in the stopband of the input signal. From this we
may form a LP estimate OŜNRLP[N,N0] of the output SNR,
and proceed to estimate N∗ via (1) with OSNR[N ] replaced
by OŜNRLP[N,N0].

Ideal filters are not practically realizable. However, if we
use a non-ideal filter which approximates an ideal filter, our
LP estimate of the output SNR based on the difference in input
and output signal powers will approximate the true output
SNR. To the extent that this is a good approximation, the
LP approach to computing N∗ using (1) will be effective.
The detailed derivation of the LP solution to the approximate
filtering problem will be given in Section 3. A summary of the
final result is presented now.
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The LP estimate N̂∗LP of the optimal filter order N∗ is determined by searching for the minimum value of N ∈ N satisfying

OŜNR[N,N0] ≥ OSNRtol, (7)

where the LP estimate of the output SNR is defined as

OŜNR[N,N0] =

[
yTy

xTx− yTy

]
−


∫
SB

[
1− |HN0(ω)|2

]
dω∫

SB

∣∣HN (ω)2
∣∣ dω

−

∫
SB

|HN0(ω)|2∫
SB

|HN (ω)|2

 . (8)

The expression in (8) may be rearranged with simple algebraic manipulations and substitutions to simplify the decision rule
for selecting N̂∗LP to be the minimum filter order N ∈ N satisfying

R ≥ Rtol[N ;N0,OSNRtol], (9)

where R is the ratio

R =

[
yTy

xTx− yTy

]
, (10)

and Rtol[N ;N0,OSNRtol] is a function of N parameterized by N0 and OSNRtol

Rtol[N ;N0,OSNRtol] =

OSNRtol +


∫
SB

|HN0(ω)|2 dω∫
SB

∣∣HN (ω)2
∣∣ dω


×

∫
SB

|HN (ω)|2 dω∫
SB

[
1− |HN0(ω)|2

]
dω

The signal vectors are x = [x[0]x[1] · · · x[L − 1] ]T and y
= [ y[0] y[1] · · · y[L − 1] ]T , where the power window length
L is the number of output samples which are produced by the
filter hN0

[n] ∈ H before N̂∗LP is computed. The nominal filter
orderN0 may be chosen to be equal to any filter orderN ∈ N ;
however, as we shall see later, the choiceN0 = Nmax produces
the best results.

The LP solution to the approximate filtering problem takes
advantage of the fact that during filtering L samples of the
output y[n] of the filter hN0

[n] are available, without additional
computational cost. These samples are used to form the vector
y and the ratio R. The function Rtol[N ;N0,OSNRtol] is a
function of N assuming N0 and OSNRtol have been fixed,
and its values may be easily computed and stored in advance.
The rule for computing N̂∗LP is to search among the stored
values of Rtol[N ;N0,OSNRtol] to find amongst all those
which satisfy Rtol[N ;N0,OSNRtol] ≤ R the unique one
which corresponds to the minimum value of N . This value
of N is defined to be N̂∗LP.

We now consider a second solution to the approximate
filtering problem, using an ML-based approach. This solution
does not use the available output signal y[n] to compute its
estimate of N∗. In certain situations the ML solution will
achieve better estimates of N∗ than the LP solution, but this
performance advantage comes at the expense of requiring
more computation.

2.2. Summary of Maximum Likelihood Approach

An alternative strategy for determining the optimal filter
order N∗ defined in (1) involves computing an estimate
Ŝx(ω) of the input power spectral density (PSD) Sx(ω)

from observations x[0]x[1] · · · x[L − 1] of the WSS input
random process x[n], and using this PSD estimate to compute
an estimate of the optimal filter order N∗. Because the
PSD estimate Ŝx(ω) is based on ML estimates of the all-
pole parameters of the underlying random process which is
assumed to be autoregressive (AR), we call this the ML
approach. A summary of the final result of the ML approach
to the approximate filtering problem is now presented, with the
details of the derivation presented in Section 4.

Assuming that Sx(ω) corresponds to a pth-order AR random
process, the ML-based estimate Ŝx(ω) is defined as

Ŝx(ω) = σ̂2
u

∣∣∣∣∣1 +

p∑
m=1

âme
−jωm

∣∣∣∣∣
−2

, (11)

where the ML-based estimates â = [ â1 â2 · · · âp ]T and σ̂2
u

for the parameters a = [ a1 a2 · · · ap]T and σ2
u are computed

via the well-known Yule-Walker equations. This method for
AR parameter estimation is well known as the autocorrelation
method. The final result is that an ML estimate N̂∗ML of N∗

may be computed via selecting the minimum value of N ∈ N
satisfying

OŜNRML[N ] ≥ OSNRtol, (12)

where the ML estimate of the output SNR is defined as

OŜNRML[N ] ,
[P̂PBy [N ]]ML

[P̂SBy [N ]]ML

, (13)

the ML estimate of the output power in the passband is defined
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as

[P̂PBy [N ]]ML =
1

2π

∫
PB

[Ŝy(ω)]MLdω

=
1

2π

∫
PB

[Ŝx(ω)]ML|HN (ω)|2dω, (14)

and the ML estimate of the output power in the stopband is
defined as

[P̂SBy [N ]]ML =
1

2π

∫
SB

[Ŝy(ω)]MLdω

=
1

2π

∫
SB

[Ŝx(ω)]ML|HN (ω)|2dω. (15)

Once the ML estimate Ŝx(ω) of Sx(ω) has been computed,
the quantities [P̂PBy [N ]]ML, [P̂SBy [N ]]ML, and OŜNRML[N ]
may be evaluated for each value of N ∈ N and frequency-
selective filter hN [n] ∈ H, and N̂∗ML may be determined
via (12). This approach will be shown to experimentally
produce excellent estimates of N∗, especially when the input
signal is synthetically generated to be a true AR WSS random
process. This is an intuitively natural result. Unfortunately
the ML approach is not practically viable due to its excessive
computational requirements. However it will serve as a
meaningful benchmark for performance comparison with the
LP approach which is the focal point of this paper.

Having now formally presented the statement of the
approximate filtering problem as well as overviews of the two
solutions which are developed in this paper, we move on to
the detailed derivations of each solution. First we formulate
the LP estimate N̂∗LP in Section 3, and then we formulate
the ML estimate N̂∗ML in Section 4. The capabilities of this
algorithm for reducing power consumption in digital filtering
applications are truly remarkable.

3. Derivation of Low-power Solution

In this section we develop the low-power (LP) solution to
the approximate filtering problem summarized in (1). The LP
solution provides a method for computing the estimate N̂∗LP
of the optimal filter order N∗ based on low-power operations.
The LP method is necessarily computationally simple, and
thus it has the advantage of requiring significantly less average
power than the ML-based solution which will be given in
Section 4. After presenting some underlying assumptions,
our approach to deriving an expression for N̂∗LP begins with
determining a LP estimate IŜNRLP[N0] of the input SNR
based on the difference between the input power and the output
power of a frequency-selective filter hN0

[n] ∈ H with nominal
order N0 ∈ N . We use our estimate IŜNRLP[N0] to produce
an expression for a LP estimate OSNRLP[N,N0] of the output
SNR, which can be substituted into (1) for OSNR[N ] to
determine the LP solution N̂∗LP to the approximate filtering
problem.

To begin we suppose that a discrete-time WSS random
process1 x[n] with power spectrum Sx(ω) is filtered using
a digital frequency-selective filter with impulse response
hN0

[n] ∈ H and orderN0 ∈ N to obtain an output signal y[n].
We assume that the filter hN0

[n] is taken from an approximate
filter structureH and thus has a well-defined spectral passband
PB, stopband SB, and transition band TB. We make the
following key assumptions:

Assumption 1
Sx(ω) is equal to an unknown constant σ2

SB in the stopband
region ofH

Sx(ω) = σ2
SB ω ∈ SB (16)

Assumption 2
For frequencies in the passband of H, |HN (ω)|2 is

approximately equal to unity

|HN (ω)|2 ≈ 1 ω ∈ PB (17)

This is assumed to be true for all N ∈ N , and thus for all
HN (ω) ∈ H.

Assumption 3
Sx(ω) is negligible in the transition band ofH

Sx(ω) ≈ 0 ω ∈ TB (18)

Furthermore, this implies that∫
TB

Sx(ω)f(ω)dω ≈ 0 (19)

for any finite, continuous, differentiable function f(ω).
We note that no assumption is made about the shape of the

function Sx(ω) within the passband. Sx(ω) in the passband
is finite but otherwise arbitrary. Assumption 2 states that
Sx(ω) is negligible in the transition band. This is reasonable
for situations in which the input stopband and passband
components are separated by a guard band, as is the case in
a whole host of communications applications [23].

As mentioned earlier, our first step is to determine a LP
estimate of the input SNR under the stated assumptions. We
define the signal-to-noise ratio (SNR) as the ratio of the signal
power in the passband ofH to the signal power in the stopband
ofH. The input SNR may be expressed as

ISNR ,
PPBx
PSBx

, (20)

where
PPBx =

1

2π

∫
PB

Sx(ω)dω, (21)

and
PSBx =

1

2π

∫
SB

Sx(ω)dω. (22)

By invoking the Assumption 1 which states that Sx(ω) is
equal to an unknown constant σ2

SB in the stopband, it follows

1 we assume that all random processes discussed in this paper are ergodic



International Journal of Wireless Communications and Mobile Computing 2021; 8(2): 22-38 28

that

ISNR =

1

2π

∫
PB

Sx(ω)dω

1

2π

∫
SB

σ2
SBdω

=

1

2π

∫
PB

Sx(ω)dω

1

2π
σ2
SB∆SB

, (23)

where ∆SB is the spectral width of the stopband. For example,
if the stopband is defined as π/2 ≤ |ω| ≤ π, then ∆SB =
π. Assumption 2 states that |HN (ω)|2 ≈ 1 for ω ∈ PB.
Since Sy(ω) = Sx(ω)|HN (ω)|2, Assumption 2 implies that
Sy(ω) ≈ Sx(ω) for ω ∈ PB, and (23) becomes

ISNR ≈ ISNR[N0] =

1

2π

∫
PB

Sy(ω)dω

1

2π
σ2
SB∆SB

=
PPB
y [N0]

1

2π
σ2
SB∆SB

, (24)

where PPBy [N0] is the output power in the passband which
was previously defined in (4). We note that the approximate
expression in (24) for the input SNR is a function of N0 due
to its dependence on PPBy [N0]. We now proceed to find an
expression for PPBy [N0]. First note that the total output power

Py[N0] =
1

2π

∫ π

−π
Sy(ω)dω

=
1

2π

∫ π

−π
Sx(ω)|HN0(ω)|2dω. (25)

may be written as the sum of three spectrally-disjoint
components

Py[N0] = PPBy [N0] + PSBy [N0] + PTBy [N0], (26)

where PPBy [N0] is given in (4), PSBy [N0] is given in (5), and

PTBy [N0] =
1

2π

∫
TB

Sy(ω)dω

=
1

2π

∫
TB

Sx(ω)|HN0
(ω)|2dω. (27)

If we now invoke the Assumption 3 which states that Sx(ω)
is negligible in the transition band, then PTBy [N0] ≈ 0, and
rearranging (26) produces

PPBy [N0] ≈ Py[N0]− PSBy [N0]. (28)

We now examine the term PSBy [N0]. Combining the
definition of PSBy [N0] in (5) with Assumption 1 which states
that Sx(ω) = σ2

SB for ω ∈ SB, we obtain

PSBy [N0] =
1

2π

∫
SB

Sx(ω)|HN0
(ω)|2dω

=
1

2π
σ2
SB

∫
SB

|HN0
(ω)|2dω (29)

In order to obtain a more elementary expression for
PSBy [N0], it is apparent from (29) that an expression for the
unknown parameter σ2

SB is needed. For this purpose we

consider the difference in input and output signal power

Px − Py[N0] =
1

2π

∫ π

−π
[Sx(ω)− Sy(ω)]dω (30)

where the total input signal power Px, is defined as

Px =
1

2π

∫ π

−π
Sx(ω)dω. (31)

As was shown for the total output power Py[N0] in (26), the
difference in input and output signal power may similarly be
broken up into its spectrally disjoint passband, stopband, and
transition band components

Px − Py[N0] =
1

2π

∫
PB

[Sx(ω)− Sy(ω)]dω

+
1

2π

∫
SB

[Sx(ω)− Sy(ω)]dω

+
1

2π

∫
TB

[Sx(ω)− Sy(ω)]dω (32)

We expand this and incorporate Assumption 1 to produce

Px − Py[N0] =
1

2π

∫
PB

Sx(ω)
[
1− |HN (ω)|2

]
dω

+
1

2π
σ2
SB

∫
SB

[
1− |HN0(ω)|2

]
dω

+
1

2π

∫
TB

Sx(ω)
[
1− |HN0(ω)|2

]
dω (33)

We now recall Assumption 2 which states that |HN0
(ω)|2 ≈

1 for ω ∈ PB. Under this assumption the first addend in the
right-hand side of (33) is approximately zero. Furthermore,
Assumption 3 which states that Sx(ω) is negligible in the
transition band, we may argue that the third addend in the
right-hand side of (33) is approximately zero. We therefore
obtain

Px − Py[N0] ≈ σ2
SB

1

2π

∫
SB

[
1− |HN0(ω)|2

]
dω, (34)

which may be rearranged to yield

σ2
SB ≈ (Px − Py[N0])

(
1

2π

∫
SB

[
1− |HN0(ω)|2

]
dω

)−1

(35)

Substituting this approximate expression for σ2
SB into (29)

we obtain

PSBy [N0] =
1

2π
σ2
SB

∫
SB

|HN0
(ω)|2dω

≈ (Px − Py[N0])PSBh [N0], (36)

where

PSB
h [N0] =

(
1

2π

∫
SB

[
1− |HN0(ω)|2

]
dω

)−1

×
(

1

2π

∫
SB

|HN0(ω)|2dω
)

(37)
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is a particularly relevant measure of the spectral quality of the
filter HN0

(ω). Note that PSBh [N0] = 0 in the case of an ideal
filter which was defined in (6). We now incorporate (28) into
(24) and obtain

ISNR[N0] =
PPBy [N0]

1

2π
σ2
SB∆SB

≈
Py[N0]− PSBy [N0]

1

2π
σ2
SB∆SB

. (38)

Substituting in the approximate expression in (36) for
PSBy [N0] produces

ISNR[N0] ≈ Py[N0]− (Px − Py[N0])PSBh [N0]
1

2π
σ2
SB∆SB

(39)

Plugging in our approximate expression in (35) for σ2
SB

produces

ISNR[N0] ≈
[

Py[N0]

Px − Py[N0]

](
1

∆SB

∫
SB

[
1− |HN0(ω)|2

]
dω

)
−
(

1

∆SB

∫
SB

|HN0(ω)|2dω
)
. (40)

Armed with this expression for ISNR[N0] which is valid
under the stated assumptions, we now turn to the problem of
computing low-power estimates of the signal-related quantities
in (40): the total input power Px and the total output power
Py[N0].

3.1. Low-power Estimation

To obtain the LP estimate ISNRLP[N0] of the input SNR
based on (40), suppose that we have applied a filter of order
N0 to the input x[n] and have obtained L output samples prior
to and including time n. We may then obtain the following
estimates

P̂x =
1

L

L−1∑
k=0

x2[n− k] = xTx, (41)

and

P̂y[N0] =
1

L

L−1∑
k=0

y2[n− k] = yTy, (42)

where the L× 1 signal vectors are defined as x = [x[n−L+
1] · · · x[n−1]x[n] ]T ,y = [ y[n−L+1] · · · y[n−1] y[n] ]T .
We note that the explicit dependence of P̂y[N0] and P̂x on n
and L is omitted for notational simplicity. By incorporating
the estimates P̂y[N0] and P̂x into (40) in place of Py[N0] and
Px, respectively, we obtain the LP estimate IŜNRLP[N0] for
the input SNR

IŜNRLP[N0] =

[
yTy

xTx− yTy

]
(

1

∆SB

∫
SB

[
1− |HN0(ω)|2

]
dω

)
−
(

1

∆SB

∫
SB

|HN0(ω)|2dω
)
. (43)

This is our final expression for IŜNRLP[N0]. We observe
that IŜNRLP[N0] is easily computable from the signal-
dependent quantities yTy and xTx and the integrals of the
filter hN0 [n] that appear in (43).

In order to compute N̂∗LP an estimate OŜNRLP[N,N0]
of the output SNR is required. To proceed, we define
SNRI[N ], the signal-to-noise ratio improvement factor, as the
multiplicative factor by which the input SNR is multiplied
by to obtain the output SNR. This will enable us to easily
obtain our estimate OŜNRLP[N,N0] of the output SNR from
our estimate IŜNRLP[N0] of the input SNR via a simple
multiplication by SNRI[N ]. The SNR improvement factor is
clearly a function of the filter order N ∈ N . The signal-to-
noise ratio improvement factor satisfies the relationship

ISNR · SNRI[N] = OSNR[N], (44)

which we may rearrange with substitution of the definitions
for ISNR and OSNR[N ] from (20) and (2), respectively, to
produce

SNRI[N ] =
OSNR[N ]

ISNR
=
PPBy [N ]

PSBy [N ]
· P

SB
x

PPBx
. (45)

If we substitute in the definitions of
PPBy [N ], PSBy [N ], PSBx , and PPBx , we arrive at

SNRI[N ] ≈
∫
PB

Sx(ω)|HN (ω)|2dω∫
SB

Sx(ω)|HN (ω)|2dω



∫
SB

Sx(ω)dω∫
PB

Sx(ω)dω

 . (46)

If we now invoke the Assumption 1 and Assumption 2
which were stated at the beginning of Section 3, our expression
for SNRI[N ] reduces to

SNRI[N ] ≈ ∆SB∫
SB

|HN (ω)|2dω
. (47)

Thus, the SNR improvement factor is inversely proportional
to the power in the stopband of the filter HN (ω). We noted
earlier in Section 2 that the frequency selective filters in H
possess the property that as the filter order N increases, the
average stopband attenuation also increases, and consequently
the total stopband power decreases. Thus it is clear from
(47) that the SNR improvement factor increases as the filter
order N increases. The function SNRI[N ] is plotted vs. the
filter order N for the Parks-McLellan FIR replacement filter
structure in Figure 3 and for the Butterworth IIR truncation
filter structure in Figure 4. In each case the stopband is
defined as ω ∈ [5π/8, π]. These two filter structures are
an essential component to low-power adaptive filter design
[21]. As is clear from Figure 3 and Figure 4, the function
SNRI[N ] monotonically increases with N . We refer to plots
of the function SNRI[N ] as the performance profile for a given
approximate filter structureH.
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Figure 3. Performance profile for the Parks-McLellan FIR replacement filter structure.
The stopband is defined as ω ∈ [5π/8, π].

Figure 4. Performance profile for the Butterworth IIR truncation filter structure. The
stopband is defined as ω ∈ [5π/8, π].

If the input SNR is relatively low we must select a
relatively high filter order to obtain a sufficiently large
SNR improvement factor to assure that the output SNR is
maintained above the minimum tolerable level OSNRtol.

Conversely, when the input SNR is relatively high we will be
able to select a relatively low filter order which will provide
an SNR improvement factor that will assure OSNR[N ] ≥
OSNRtol.

To determine the LP solution to estimating N∗, we replace the exact ISNR in (44) with the LP estimate ISNRLP[N0] given in
(43), to obtain

OŜNRLP[N,N0] = IŜNRLP[N0] · SNRI[N ]

=

[
yTy

xTx− yTy

]
∫
SB

[
1− |HN0(ω)|2

]
dω∫

SB

|HN (ω)|2dω

−

∫
SB

|HN0(ω)|2dω∫
SB

|HN (ω)|2dω

 , (48)

which we may compare to OSNRtol to determine the low-power estimate N̂∗LP for the optimal filter order N∗ as the minimum
filter order N ∈ N satisfying

OŜNRLP[N,N0] ≥ OSNRtol. (49)

The expression in (48) may be rearranged with simple algebraic manipulations and substitutions to produce

[
yTy

xTx− yTy

]
≥

OSNRtol +


∫
SB

|HN0
(ω)|2dω∫

SB

|HN (ω)|2dω


×

∫
SB

|HN (ω)|2dω∫
SB

[
1− |HN0

(ω)|2
]
dω

. (50)

By defining the ratio of quadratic forms in the above expression as

R =

[
yTy

xTx− yTy

]
, (51)

and the function Rtol[N ;N0,OSNRtol] as

Rtol[N ;N0,OSNRtol] =

OSNRtol +


∫
SB

|HN0
(ω)|2dω∫

SB

|HN (ω)|2dω


×

∫
SB

|HN (ω)|2dω∫
SB

[
1− |HN0

(ω)|2
]
dω

. (52)

the decision rule for selecting N̂∗LP simplifies to choosing the minimum filter order N ∈ N satisfying

R ≥ Rtol[N ;N0,OSNRtol]. (53)



31 Jeffrey Ludwig: Asymptotically Optimal Low-Power Digital Filtering Using Adaptive Approximate Processing

The notation Rtol[N ;N0,OSNRtol] has been used to
emphasize that Rtol[N ;N0,OSNRtol] is a function of the
filter order N and is parameterized by the nominal filter
order N0 and the minimum tolerable output SNR OSNRtol.
This enforces the fact that OSNRtol and N0 are application-
specific parameters which are to be fixed in advance, leaving
Rtol[N ;N0,OSNRtol] a monotonic function of the single
variable N . Note that the only signal-dependent quantity in
(53) is the ratio of quadratic forms R, which was defined in
(51). As a final note, if we desire to avoid the power hungry
division involved in computing R, we may use an alternative
form for the decision rule for selecting N̂∗LP. The resulting
simplified decision rule for selecting N̂∗LP is to to choose the
minimum filter order N ∈ H satisfying

yTy ≥ (xTx− yTy)Rtol[N ;N0,OSNRtol] (54)

The low-power decision rule is now summarized.
Summary of Method for Determining N̂∗LP
1. Fix the values of the application-specific parameters
N0, L, and OSNRtol

2. Compute R using (51) and the signal vectors x and y
defined in (41) and (42), respectively

3. Determine N̂∗LP as the minimum value of N for which

R ≥ Rtol[N ;N0,OSNRtol],

as described in (53) or (54)
In summary, the LP solution to the approximate filtering

problem invokes three explicit assumptions and relies on
the signal-dependent estimates P̂x and P̂y[N0] given in (41)
and (42), respectively. For situations in which the three
assumptions are valid and in which P̂x and P̂y[N0] are good
estimates of Px and Py[N0], respectively, we expect excellent
estimator performance using the LP estimate N̂∗LP for N∗.
This issue is explored in the next section. The function
SNRI[N ] and the nature of its dependence on N and H have
been studied extensively [21].

3.2. Convergence Analysis

It is of interest to determine the degree to which the low-
power filter order estimate N̂∗LP converges to the theoretically
optimal filter order N∗ for input signals that satisfy the
assumptions underlying the derivation of N̂∗LP. In this section,
we illustrate empirically that better convergence is obtained
as the duration L over which P̂x and P̂y[N0] are computed is
made longer, and also as the nominal filter order N0 is made
larger. We also observe and discuss the fact that since optimal
filter order selections partition the range of possible input SNR
values, the relation of the actual input SNR to the boundaries in
this partitioning is an important factor in determining whether
or not the truly optimal filter order N∗ is exactly determined
by the LP estimation method.

For our convergence analysis, we assume that the input
signal satisfies the same conditions that were stipulated in
the derivation of our expression for N̂∗LP in Section 3. This

means that we assume the input signal x[n] is a WSS random
process. When L consecutive samples of the output y[n] are
produced using a filter of order N0, it follows that these output
samples also belong to a WSS random process. We conclude
that P̂x and P̂y[N0] as defined in (41) and (42), respectively,
represent estimates of the zero-lag auto-correlation values of
x[n] and y[n], respectively. These well-known estimators
converge to the true values of the zero-lag autocorrelations as
L is made larger. Since P̂x and P̂y[N0] are the only signal-
related quantities used in obtaining the input SNR estimate
in accordance with (43), we expect the input SNR estimate
ISNRLP[N0] to converge to the true input SNR as L and N0

are made larger.
To verify the influence of the estimation interval L on the

input SNR estimate, we applied the LP estimation method of
(53) to a synthetically generated random signal x[n]. This
signal was designed to have a flat spectrum in the passband
|ω| ∈ [0, 3π/8], a flat spectrum in the stopband |ω| ∈
[5π/8, π], negligible energy in the transition band |ω| ∈
[3π/8, 5π/8], and a fixed SNR throughout its 10,000 point
duration. The signal was filtered using an order-N0 digital
Butterworth filter. The L consecutive input and output samples
(starting from the 1000th sample to avoid filter startup transient
effects) were used to obtain the LP estimate ISNRLP[N0] of
the input SNR. For a case where the true SNR of the input
signal x[n] was set to 0.07, in Figure 5 we show the LP
estimates of the input SNR obtained for different values of L
in the range 1 ≤ L ≤ 4000 and N0 in the range 4 ≤ N0 ≤ 10.
It is clear from Figure 5 that as L and N0 increase, the LP
estimate of the input SNR visually converges to the true input
SNR of 0.07. It should be noted that lower values of N0

correspond to frequency response shapes which violate the
underlying assumptions to a greater degree. We must keep in
mind that unless the filter hN0

[n] is ideal as in (6), the estimate
ISNRLP[N0] will never truly converge to the true input SNR,
no matter how large L is made.

Figure 5. Solid curves represent input SNR estimates as a function of L and N0. The
actual SNR for the input signal is 0.07. The straight dotted lines indicate the partitioning
of the input SNR space by optimal values for the number of filter sections to use in order
to obtain an output SNR of at least 1000.

In Figure 5, we have also indicated the partitioning of the
input SNR space in accordance with the corresponding optimal
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filter order N* which should be used to ensure a minimum
tolerable output SNR of 1000. Except for very small values
of L, it is seen that the LP estimate of the input SNR leads to
N̂∗LP = N∗. This result is dependent on the fact that an input
SNR of .07 happens to fall near the middle of the input SNR
space corresponding to N∗ = 4. For example, if the actual
input SNR had been made equal to 0.04, the LP estimates of
the input SNR may have crossed into the incorrect N∗ = 5
region for a larger set of values of L.

To close this section, we offer two remarks regarding the
convergence properties of the LP optimal filter order estimate
N̂∗LP . First, we note that

lim
N0→∞

lim
L→∞

IŜNRLP[N0] = ISNR. (55)

This statement simply elucidates the fact that as N0 → ∞,
the filter hN0)[n] becomes ideal with no transition band. In
the limiting case of (55) the power difference Px − Py[N0]
converges to the true value of PPBx , and consequently the
ratio R = yTy/(xTx − yTy) converges to the true input
SNR. While in practice we will never be able to realize the
conditions of this limiting case, the result is nevertheless
insightful. Secondly, we observe that under Assumption 1

lim
N→∞

SNRI[N ] =
∆SB∫

SB

|HN (ω)|2dω
, (56)

which is the same expression we get for SNRI[N ] when we
invoke the assumptions presented in the derivation of the LP
estimation method. Remarkably, then, we may conclude that

lim
N→∞

lim
N0→∞

lim
L→∞

= N̂∗LP, (57)

which implies that if we use sufficiently large values of
L and N0 to compute ISNRLP[N0], then we can expect
asymptotically optimal performance as the filter orders N ∈
N that we search over to compute N̂∗LP increase without
bound. A second note we make in closing is that by
introducing the L× L convolution matrix

H[N0] =

hN0 [0] 0 · · · 0

hN0
[1] hN0

[0] · · · 0

...
...

. . .
...

hN0
[L− 1] hN0

[L− 2] · · · hN0
[0]


(58)

we may express the vector y as

y = H[N0]x, (59)

and thus the expression for R in (51) simplifies to

R =
xTA[N0]x

xTB[N0]x
(60)

where the L× L matrices A and B satisfy

A = HT [N0]H[N0] (61)

B = (I−H[N0])T (I−H[N0]). (62)

In this formulationR has the form of a ratio of two quadratic
forms in the random vector x. It is interesting to note that
if the vector x is a multivariate Gaussian random vector,
an extremely complicated nevertheless computable expression
may be obtained for the variance of R as a function of
the filter coefficients in H and the power window length L.
Various forms of the variance of the random variable R may
be found in the literature [24-27]. A future direction of this
research is to analytically evaluate this variance and compare
it to the sample variance computed in computer simulations.
Furthermore, the problem of designing the filter hN [n] which
appears in the matrix H[N ] to produce filter structures H
which minimize the variance of R provides an exciting and
challenging future avenue to pursue in the area of approximate
filtering algorithms.

In addition, expressions for the mean and variance of
xTA[N0]x and xTB[N0]x for a multivariate Gaussian
random vector x with zero mean and covariance matrix Σ may
be obtained in closed form [28]. Specifically, they are given by

E(xTA[N0]x) = trace(ΣA[N0]) (63)

VAR(xTA[N0]x) = 2 trace(ΣA[N0])2, (64)

and

E(xTB[N0]x) = trace(ΣB[N0]) (65)

VAR(xTB[N0]x) = 2 trace(ΣB[N0])2. (66)

While these expressions do not give the true mean and variance
of the random variable R or N̂∗LP, they do offer insight into
the statistical properties of two signal-dependent quantities
yTy = xTA[N0]x and (yTy− xTx) = xTB[N0]x involved
in the simplified division-free decision rule for determining
N̂∗LP given in (54), and thus are worth mentioning here.

3.3. Numerical Example

In this section we present a simple numerical example to
demonstrate the efficacy of the LP solution to the approximate
filtering problem. We first synthetically generated a random
driving noise signal which consisted of independent and
identically distributed samples distributed according to a unit
variance, zero mean Gaussian probability density function
(PDF). This driving noise sequence was then filtered with a
30th-order all-pole filter to create a WSS Gaussian random
process. A plot of the PSD of this random process is shown
in Figure 6.
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Figure 6. Power spectral density of the 30th-order AR process which is used as the input
signal in the numerical example.

The all-pole filter parameters were selected to assure the
power spectral density Sx(ω) was negligible in the transition
band, defined in this example to be 3π/8 ≤ |ω| ≤ 5π/8.

The exact all-pole parameters that were used in this example
are given in a more elaborate research study [21]. The
passband was defined to be 0 ≤ |ω| ≤ 3π/8 and the stopband
was defined as 5π/8 ≤ |ω| ≤ π. As can be seen from
the spectral shape of Sx(ω), the input power spectral density
is negligible in the transition band and relatively flat in the
stopband in accordance with the assumptions underlying the
development of the LP solution to the approximate filtering
problem.

Table 1. Summary of the results of the numerical example using the LP estimator in which
the true value of N∗ = 10 and the true input SNR is 0.4831. The results are tabulated
for power window lengths of L = 50, 100, 500, 1000, and 5000.

L
N̂∗

LP IŜNRLP

Sample Mean Sample STD Sample Mean Sample STD

50 7.5700 2.0013 0.6243 0.6540

100 7.7100 1.5718 0.5009 0.2320

500 7.2300 1.4829 0.5046 0.0987

1000 7.2000 1.4771 0.4998 0.0678

5000 7.6800 1.4967 0.4809 0.0260

In Table 1 we summarize the LP estimation results after 100
Monte Carlo trials were performed for each of the values of
L = 50, 100, 500, 1000, and 5000. The sample mean and
sample standard deviation (STD) are listed in Table 1. Clearly
as L increases, the quality of our LP estimates N∗LP and
IŜNRLP improve. This is evident from the fact that the sample
standard deviations decrease as L increases. In addition,
the low-power estimate IŜNRLP of the input SNR converges
towards the true value of 0.4831 as L increases. In this
example the Parks-McLellan FIR replacement approximate
filter structure was used withN0 = Nmax = 64 andNmin = 3.

In Figure 7 we have plotted four histograms of the actual
LP estimates of the input SNR for the same 100 Monte Carlo
trials. Each histogram corresponds the estimates of the input
SNR for different values of L. As L increases the estimates
tighten up around their means. From the entries in Table 1 it
is clear that while IŜNRLP converges towards the true input
SNR as L increases, the estimate N̂∗LP does not coverage to
N∗ in this example. This is a consequence of the fact that
theoretically IŜNRLP converges to ISNR as L andN0 increase
without bound, while the convergence of N̂∗LP to N∗ requires
L, N0, and Nmax to increase without bound.

Figure 7. Histograms of the LP input SNR estimates for L = 5000, 1000, 100, and 50.
Each histogram represents the results of 100 Monte Carlo simulations.

We shall revisit this same numerical example in Section
4.2 and evaluate the performance of the ML solution for
comparison to the results given here.

4. Derivation of Maximum Likelihood
Solution

In this section we assume Sx(ω) is the PSD of an
autoregressive (AR) Gaussian random process, and we use a
maximum likelihood (ML) objective to find estimates for the
parameters defining this process. As we shall see the PSD
Sx(ω) is a function of these parameters, and this function
is one-to-one (invertible). Therefore we may easily obtain
the ML estimate [Ŝx(ω)]ML by invoking the well-known
invariance property of the ML estimator [29].

By inspecting (1) we observe that the optimal filter order
N∗ is not in one-to-one correspondence with Sx(ω). This
is true since many different functions Ŝx(ω) could result
in the same ratio of integrals which define OSNR[N ], and
thus many different functions Ŝx(ω) could result in the same
N∗. Nevertheless, we shall still be able to find a maximum
modified likelihood estimate, which we shall denote N̂∗ML, for
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the optimal filter order N∗ which is based on the maximum
likelihood estimate [Ŝx(ω)]ML. We will show that the estimate
N̂∗ML, although not the estimate which truly maximizes the
associated likelihood function, instead maximizes a modified
likelihood function. Thus the performance of N̂∗ML will
serve as a meaningful benchmark for comparison with the LP
estimate N̂∗LP of the optimal filter order which was presented
in Section 3.

4.1. Maximum Likelihood Estimation

In this section we first present an expression for the
asymptotic ML estimates of the AR parameters of a Gaussian
random process. Directly following the insightful presentation
in the textbook by Kay [29], we consider the random process
generated as the output x[n] of a stable, causal all-pole filter

H(z) =
1

A(z)
(67)

excited at the input by a zero-mean white Gaussian noise
sequence u[n]. The pth-order polynomial function A(z) is
defined by the AR filter parameters [ a1 a2 · · · ap ] as

A(z) = 1 +

p∑
k=1

akz
−k. (68)

If the all-pole filter H(z) is stable, the excitation noise
sequence u[n] assures that the output x[n] is a WSS random
process. The effect of the filter is to color the white noise
sequence u[n]. The AR model is capable of producing a wide
variety of PSD functions, depending on the choice of the AR
filter parameters [ a1 a2 · · · ap ] and excitation noise variance
σ2
u. The problem is to estimate the parameters [ a1 a2 · · · ap ]

and σ2
u based on the observed data sequence [x[0] · · · x[L −

1] ]. Once the parameter estimates [ â1 â2 · · · âp ] and σ̂2
u are

computed, the PSD is estimated as

Ŝx(ω) = σ̂2
u

∣∣∣∣∣1 +

p∑
m=1

âme
−jωm

∣∣∣∣∣
−2

(69)

We now given expressions for the asymptotic ML estimates
for the parameters [ a1 a2 · · · ap ] and σ2

u. First, the estimated
autocorrelation function is

r̂xx[k] =


1
L

L−1−|k|∑
n=0

x[n]x[n+ |k| |k| ≤ L− 1

0 |k| ≥ L
. (70)

The set of equations to be solved for the asymptotic ML
estimate of the AR filter parameters a is∑

i=1

pr̂xx[k − l] = −r̂xx[k] k = 1, 2, · · · , p (71)

which can be rewritten in matrix form as

r̂xx[0] r̂xx[1] · · · r̂xx[p− 1]

r̂xx[1] r̂xx[0] · · · r̂xx[p− 2]

...
...

. . .
...

r̂xx[p− 1] r̂xx[p− 2] · · · r̂xx[0]





â1

â2

...

âp



= −



r̂xx[1]

r̂xx[2]

...

r̂xx[p]


. (72)

These are the well-known Yule-Walker equations, which
may be recursively solved using the Levinson recursion
algorithm [30]. What is left is to solve for the asymptotic ML
estimate σ2

u. The asymptotic ML estimate is given by

σ̂2
u = r̂xx[0] +

p∑
k=1

âkr̂xx[k]. (73)

Thus, the asymptotic ML estimates â and σ̂2
u for the

parameters a and σ2
u are given in (72) and (73), respectively.

These estimates converge to the true ML estimates as L →
∞, and yield reasonable estimates for sufficiently large finite
values L. We recall that our ML estimate of the PSD is

[Ŝx(ω)]ML = σ̂2
u

∣∣∣∣∣1 +

p∑
m=1

âme
jωm

∣∣∣∣∣
−2

. (74)

This estimate may be used to determine an ML estimate
N̂∗ML of the optimal filter orderN∗. This ML-based estimate is
produced by choosing N̂∗ML to be the minimum order N ∈ N
of the frequency-selective filter hN [n] ∈ H which provides
sufficient stopband attenuation to assure

OŜNRML ≥ OSNRtol, (75)

where the ML-based estimate of the output SNR is defined as

OŜNRML ,
[P̂PBy ]ML

[P̂SBy ]ML

, (76)

the ML-based estimate of the output power in the passband is
defined as

[P̂PBy [N ]]ML =
1

2π

∫
PB

[Ŝy(ω)]MLdω

=
1

2π

∫
PB

[Ŝx(ω)]ML|HN (ω)|2dω, (77)
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and the ML-based estimate of the output power in the stopband
is defined as

[P̂SBy [N ]]ML =
1

2π

∫
SB

[Ŝy(ω)]MLdω

=
1

2π

∫
SB

[Ŝx(ω)]ML|HN (ω)|2dω. (78)

Consequently, the estimate N̂∗ML maximizes the modified
likelihood function which is related to the true likelihood
function as explained in the textbook by Kay [29].

Summary of Method for Determining N̂∗ML

1. Given observations [x[0] · · · x[L−1] ], compute the ML
estimates of â and σ̂2

u using (73) and (73), respectively
2. Compute [Ŝx(ω)]ML via (74)
3. Determine N̂∗ML according to (75)

4.2. Numerical Example

In this section we present the results of using the ML
estimation method for determining N∗ on the same numerical
example that was presented in Section 3.3. Numerical results
are given to demonstrate the performance of the ML method.
Recall from Section 3.3 that this example involves a random
driving noise signal consisting of independent and identically
distributed samples distributed according to a unit variance,
zero mean Gaussian PDF. This driving noise signal was filtered
with an 30th-order all-pole filter to create a WSS Gaussian
random process with a PSD which was shown previously in
Figure 6. In Table 2 we summarize the ML estimation results
after 100 Monte Carlo trials were performed for each of the
values of L = 50, 100, 500, 1000, and 5000. The sample
mean and sample standard deviation (STD) are listed Table
2. Clearly as L increases, the quality of the ML optimal
filter order estimate N̂∗ML improves since its standard deviation
decreases as L increases. In addition, the ML estimate of
the optimal filter order converges towards the true value of
N∗ = 10 as L becomes larger.

In the simulations we used the Yule-Walker equations and
the Levinson recursion to solve for the ML AR coefficients
which give the ML power spectrum estimate and thus the ML
estimate of the optimal filter order N̂∗ML. While the Yule-
Walker equations give the asymptotic ML estimates of the
AR parameters which converge to the true ML estimates as
L → ∞, it is well known that another method produces
better estimates for finite data records [31]. This method of
AR parameter estimation is known as the forward-backward
least-squares method. Using the forward-backward least-
squares method to compute the AR parameter estimates would
probably improve the performance of the estimator N̂∗ML. In
our simulations here we used the Yule-Walker AR parameter
estimates since we were guided by the mathematical optimality
of the ML approach. Small errors in the AR parameter
estimates should not have a significant effect on the estimator
N̂∗ML. This is true since N̂∗ML is based on a ratio of integrals

of the power spectrum. Small errors in the AR parameter
estimates will be integrated out when computing N̂∗ML.

As a final note, we observe that in determining the ML
estimates for the numerical example we assumed the order of
the AR process was known to be equal to 30. This introduces
an element of unfairness when comparing the performance of
the ML and LP approaches. In practice the AR order would
not be known exactly, and would thus have to be estimated.
Furthermore, this example was specifically tailored for the ML
approach, since the input signal was synthetically generated to
represent a true AR random process. This provides a second
reason why we would expect the ML estimates to outperform
the LP estimates.

Table 2. Summary of the results of the numerical example using the ML estimator in
which the true value of N∗ = 10 and the true input SNR is 0.4831. The results are
tabulated for power window lengths of L = 50, 100, 500, 1000, and 5000.

L
N̂∗

ML

Sample Mean Sample STD

50 11.0300 1.5983

100 11.2000 1.5176

500 10.6000 1.2060

1000 10.7200 1.2877

5000 10.2400 0.8180

5. Experimental Design and Results of
the Low-power Adaptive IIR Digital
Filter

In this section we present computer simulations which show
that significant power savings may be achieved when the order
of an IIR digital filter is dynamically varied to provide time-
varying stopband attenuation in proportion to the time-varying
SNR of the input signal, while maintaining a fixed level of
output quality. We highlight experiments involving speech
signals to demonstrate the practical viability of the low-power
adaptive IIR digital filter presented in this paper. As we shall
see, significant reduction in power consumption over a fixed-
order IIR digital filter is achieved in simulations involving the
demultiplexing frequency-division multiplexed (FDM) speech
signals.

We illustrate the potential of the low-power adaptive
IIR digital filter to reduce power consumption in speech
processing. We use a Butterworth truncation filter structure
with 10 second-order sections. This approximate filter
structure and the adaptation control strategy described in
Section 3 was applied to two speech signals which had been
frequency-division multiplexed. The power window length
was chosen to be L = 100 and the minimum tolerable output
SNR was set to 1,000. The IIR filters in the Butterworth
truncation filter structure each had a half-power frequency
of π/2. The stopband was defined to be between 5π/8
and π, while the passband was defined to be between 0
and 3π/8. One speech signal was spectrally centered in
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the passband region of the lowpass filter and the other was
modulated into the stopband region of the lowpass filter. The
sampling rate for each of the speech signal was 16,000 Hz.
Figure 8 shows the speech signal in the passband, the speech
signal in the stopband, and the evolution of the number of
filter sections used by the approximate filtering technique.
Since we are using cascades of second order subsections, the
power consumption is directly proportional to the number of
active subsections, which can be enabled or disabled with low
overhead. Since we are calculating the model order over a
window length L = 100, less than 1% overhead is needed
for these calculations. Examination of the figure shows that
as would be expected, the number of filter sections is large
when the input SNR is small. Furthermore, the number of
filter sections is small when the input SNR is high. If we
compare the power consumption for in the low-power adaptive
filter to the power consumption of a fixed IIR filter order need
to handle the worst-case signal statistics, we see that a power
reduction of approximately 63% is achieved in this simulation.
This can be best understand with a visual inspection of Figure
8, where we can see the time-varying number of filter sections
as a function of sample number ranges between 2 and 10, while
the number of sections in a fixed-order IIR filter that would
ensure we are able to maintain the minimum tolerable output
SNR of 1,000 at all times is 8.

Figure 8. Demultiplexing of FDM speech using low power frequency selective filtering.
(a) passband speech, (b) stopband speech, and (c) number of filter sections as a function
of sample number.

For comparison of the of the power savings achieved by the
adaptive digital filter presented in this paper to other results
recently reported in the literature, we present the findings

of three other experiments. First, a recent state-of-the-art
digital FIR filter using data-driven clock gating and multibit
flip-flops combined achieved 22% to 25% power reduction
compared to that using a conventional design [3]. Secondly,
in another very recent study, a novel design for an energy-
efficient IIR digital filter achieved nearly 63% reduction in
energy with a negligible deviation of the frequency response
from the standard implementation [1]. Finally, a low power
reconfigurable FIR digital filter based on dual mode operation
achieved power savings up to 37.97% in simulations using
speech signal processing, similar to the simulations in this
section [32]. These results demonstrate how low-power digital
signal processing continues to be an area of focused interest
and innovation.

The low-power (LP) approach to finding N∗ is
computationally simple and viable for direct implementation
in hardware for practical applications. A research group
at Stanford University has designed and implemented an
approximate filtering algorithm for the application of low-
power interpolation and decimation. Excellent results have
been obtained with a conventional interpolation/decimation
system that was implemented and shown to consume an
average of approximately 86.4 mW with a 5V power supply.
Using an approximate filtering algorithm compiled onto
a programmable processor, the power consumption was
reduced by 36% for the decimation system and 17% for the
interpolation system [22].

6. Conclusion
We have considered the practical problem of dynamically

reducing the order of a frequency-selective digital filter
to reduce average power consumption, and presented the
class of approximate filtering algorithms for which this
is accomplished. Approximate filtering algorithms were
developed by abstracting a theory from the practical low-
power filtering problem. The theory centered on the problem
of determining an optimal filter order based on observations
of the input data and a set of concrete assumptions on the
statistics of the input signal. We explored the statistical
properties of this theory, and showed that under certain
assumptions the class of approximate filtering algorithms is
asymptotically optimal. The theory served the purpose of
aiding us in understanding interpreting the performance of
approximate filtering algorithms.

The low-power approach to adaptively finding the optimal
filter order is computationally simple and viable for direct
implementation in hardware for practical applications in which
power savings in the range of 17% to 35% have been achieved.
The theoretical and numerical simulation results demonstrate
the efficacy and versatility of asymptotically optimal low-
power digital filtering using adaptive approximate processing,
and contribute to the evolution of low-power digital signal
processing which continues to be an area of focused interest
and innovation.
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